Parallel Multiprojection Preconditioned Methods Based on Subspace Compression
Byron E. Moutafis,
Christos K. Filelis-Papadopoulos and
George A. Gravvanis
Mathematical Problems in Engineering, 2017, vol. 2017, 1-11
Abstract:
During the last decades, the continuous expansion of supercomputing infrastructures necessitates the design of scalable and robust parallel numerical methods for solving large sparse linear systems. A new approach for the additive projection parallel preconditioned iterative method based on semiaggregation and a subspace compression technique, for general sparse linear systems, is presented. The subspace compression technique utilizes a subdomain adjacency matrix and breadth first search to discover and aggregate subdomains to limit the average size of the local linear systems, resulting in reduced memory requirements. The depth of aggregation is controlled by a user defined parameter. The local coefficient matrices use the aggregates computed during the formation of the subdomain adjacency matrix in order to avoid recomputation and improve performance. Moreover, the rows and columns corresponding to the newly formed aggregates are ordered last to further reduce fill-in during the factorization of the local coefficient matrices. Furthermore, the method is based on nonoverlapping domain decomposition in conjunction with algebraic graph partitioning techniques for separating the subdomains. Finally, the applicability and implementation issues are discussed and numerical results along with comparative results are presented.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/2580820.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/2580820.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2580820
DOI: 10.1155/2017/2580820
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().