EconPapers    
Economics at your fingertips  
 

Efficiency Bounds for Two-Stage Production Systems

Xiao Shi

Mathematical Problems in Engineering, 2018, vol. 2018, 1-9

Abstract:

Traditional data envelopment analysis (DEA) models find the most desirable weights for each decision-making unit (DMU) in order to estimate the highest efficiency score as possible. These efficiency scores are then used for ranking the DMUs. The main drawback is that the efficiency scores based on weights obtained from the standard DEA models ignore other feasible weights; this is due to the fact that DEA may have multiple solutions for each DMU. To overcome this problem, Salo and Punkka (2011) deemed each DMU as a “Black Box” and developed models to obtain the efficiency bounds for each DMU over sets of all its feasible weights. In many real world applications, there are DMUs that have a two-stage production system. In this paper, we extend the Salo and Punkka’s (2011) model to a more common and practical case considering the two-stage production structure. The proposed approach calculates each DMU’s efficiency bounds for the overall system as well as efficiency bounds for each subsystem/substage. An application for nonlife insurance companies has been discussed to illustrate the applicability of the proposed approach and show the usefulness of this method.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/2917537.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/2917537.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:2917537

DOI: 10.1155/2018/2917537

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:2917537