EconPapers    
Economics at your fingertips  
 

Image Segmentation Using a Trimmed Likelihood Estimator in the Asymmetric Mixture Model Based on Generalized Gamma and Gaussian Distributions

Yi Zhou and Hongqing Zhu

Mathematical Problems in Engineering, 2018, vol. 2018, 1-17

Abstract:

Finite mixture model (FMM) is being increasingly used for unsupervised image segmentation. In this paper, a new finite mixture model based on a combination of generalized Gamma and Gaussian distributions using a trimmed likelihood estimator (GGMM-TLE) is proposed. GGMM-TLE combines the effectiveness of Gaussian distribution with the asymmetric capability of generalized Gamma distribution to provide superior flexibility for describing different shapes of observation data. Another advantage is that we consider the spatial information among neighbouring pixels by introducing Markov random field (MRF); thus, the proposed mixture model remains sufficiently robust with respect to different types and levels of noise. Moreover, this paper presents a new component-based confidence level ordering trimmed likelihood estimator, with a simple form, allowing GGMM-TLE to estimate the parameters after discarding the outliers. Thus, the proposed algorithm can effectively eliminate the disturbance of outliers. Furthermore, the paper proves the identifiability of the proposed mixture model in theory to guarantee that the parameter estimation procedures are well defined. Finally, an expectation maximization (EM) algorithm is included to estimate the parameters of GGMM-TLE by maximizing the log-likelihood function. Experiments on multiple public datasets demonstrate that GGMM-TLE achieves a superior performance compared with several existing methods in image segmentation tasks.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/3468967.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/3468967.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3468967

DOI: 10.1155/2018/3468967

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:3468967