EconPapers    
Economics at your fingertips  
 

Principal Component Analysis Based Dynamic Fuzzy Neural Network for Internal Corrosion Rate Prediction of Gas Pipelines

Xiaoxu Chen, Linyuan Wang and Zhiyu Huang

Mathematical Problems in Engineering, 2020, vol. 2020, 1-9

Abstract:

Aiming at the characteristics of the nonlinear changes in the internal corrosion rate in gas pipelines, and artificial neural networks easily fall into a local optimum. This paper proposes a model that combines a principal component analysis (PCA) algorithm and a dynamic fuzzy neural network (D-FNN) to address the problems above. The principal component analysis algorithm is used for dimensional reduction and feature extraction, and a dynamic fuzzy neural network model is utilized to perform the prediction. The study implementing the PCA-D-FNN is further accomplished with the corrosion data from a real pipeline, and the results are compared among the artificial neural networks, fuzzy neural networks, and D-FNN models. The results verify the effectiveness of the model and algorithm for inner corrosion rate prediction.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/3681032.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/3681032.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3681032

DOI: 10.1155/2020/3681032

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:3681032