Piecewise Linear Model for Multiskilled Workforce Scheduling Problems considering Learning Effect and Project Quality
Shujin Qin,
Shixin Liu and
Hanbin Kuang
Mathematical Problems in Engineering, 2016, vol. 2016, 1-11
Abstract:
Workforce scheduling is an important and common task for projects with high labour intensities. It becomes particularly complex when employees have multiple skills and the employees’ productivity changes along with their learning of knowledge according to the tasks they are assigned to. Till now, in this context, only little work has considered the minimum quality limit of tasks and the quality learning effect. In this research, the workforce scheduling model is developed for assigning tasks to multiskilled workforce by considering learning of knowledge and requirements of project quality. By using piecewise linearization to learning curve, the mixed 0-1 nonlinear programming model (MNLP) is transformed into a mixed 0-1 linear programming model (MLP). After that, the MLP model is further improved by taking account of the upper bound of employees’ experiences accumulation, and the stable performance of mature employees. Computational experiments are provided using randomly generated instances based on the investigation of a software company. The results demonstrate that the proposed MLPs can precisely approach the original MNLP model but can be calculated in much less time.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/3728934.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/3728934.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3728934
DOI: 10.1155/2016/3728934
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().