A Parallel Implementation of Unscheduled Flow Control in Interconnected Power Systems
G. Ozdemir Dag and
Mustafa Bagriyanik
Mathematical Problems in Engineering, 2012, vol. 2012, 1-19
Abstract:
The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers). The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2012/376291.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2012/376291.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:376291
DOI: 10.1155/2012/376291
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().