EconPapers    
Economics at your fingertips  
 

On the Fractional Metric Dimension of Convex Polytopes

M. K. Aslam, Muhammad Javaid, Q. Zhu and Abdul Raheem

Mathematical Problems in Engineering, 2021, vol. 2021, 1-13

Abstract:

In order to identify the basic structural properties of a network such as connectedness, centrality, modularity, accessibility, clustering, vulnerability, and robustness, we need distance-based parameters. A number of tools like these help computer and chemical scientists to resolve the issues of informational and chemical structures. In this way, the related branches of aforementioned sciences are also benefited with these tools as well. In this paper, we are going to study a symmetric class of networks called convex polytopes for the upper and lower bounds of fractional metric dimension (FMD), where FMD is a latest developed mathematical technique depending on the graph-theoretic parameter of distance. Apart from that, we also have improved the lower bound of FMD from unity for all the arbitrary connected networks in its general form.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/3925925.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/3925925.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3925925

DOI: 10.1155/2021/3925925

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:3925925