Marine Organism Detection and Classification from Underwater Vision Based on the Deep CNN Method
Fenglei Han,
Jingzheng Yao,
Haitao Zhu and
Chunhui Wang
Mathematical Problems in Engineering, 2020, vol. 2020, 1-11
Abstract:
Seabed fishing depends on humans in common, for instance, the sea cucumber, sea urchin, and scallop fishing, which is always a very dangerous task. Considering the underwater complex environment conditions such as low temperature, dim vision, and high pressure, collecting the marine products using underwater robots is commonly regarded as a feasible solution. The key technique of the underwater robot development is to detect and locate the main target from underwater vision. This research is based on the deep convolutional neural network (CNN) to realize the target recognition from underwater vision. The RPN (Region Proposal Network) is used to optimize the feature extraction capability. Deep learning dataset is prepared using an underwater video obtained from a sea cucumber fishing ROV (Remote Operated Vehicle). The inspiration of the network structure and the improvements come from the Faster RCNN and Hypernet method, and for the underwater dataset, the method proposed in this paper shows a good performance of recall and object detection accuracy. The detection runs with a speed of 17 fps on a GPU, which is applicable to be used for real-time processing.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/3937580.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/3937580.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:3937580
DOI: 10.1155/2020/3937580
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().