EconPapers    
Economics at your fingertips  
 

Instance-Wise Denoising Autoencoder for High Dimensional Data

Lin Chen and Wan-Yu Deng

Mathematical Problems in Engineering, 2016, vol. 2016, 1-13

Abstract:

Denoising Autoencoder (DAE) is one of the most popular fashions that has reported significant success in recent neural network research. To be specific, DAE randomly corrupts some features of the data to zero as to utilize the cooccurrence information while avoiding overfitting. However, existing DAE approaches do not fare well on sparse and high dimensional data. In this paper, we present a Denoising Autoencoder labeled here as Instance-Wise Denoising Autoencoder (IDA), which is designed to work with high dimensional and sparse data by utilizing the instance-wise cooccurrence relation instead of the feature-wise one. IDA works ahead based on the following corruption rule: if an instance vector of nonzero feature is selected, it is forced to become a zero vector. To avoid serious information loss in the event that too many instances are discarded, an ensemble of multiple independent autoencoders built on different corrupted versions of the data is considered. Extensive experimental results on high dimensional and sparse text data show the superiority of IDA in efficiency and effectiveness. IDA is also experimented on the heterogenous transfer learning setting and cross-modal retrieval to study its generality on heterogeneous feature representation.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/4365372.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/4365372.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4365372

DOI: 10.1155/2016/4365372

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:4365372