A New Least Squares Support Vector Machines Ensemble Model for Aero Engine Performance Parameter Chaotic Prediction
Dangdang Du,
Xiaoliang Jia and
Chaobo Hao
Mathematical Problems in Engineering, 2016, vol. 2016, 1-8
Abstract:
Aiming at the nonlinearity, chaos, and small-sample of aero engine performance parameters data, a new ensemble model, named the least squares support vector machine (LSSVM) ensemble model with phase space reconstruction (PSR) and particle swarm optimization (PSO), is presented. First, to guarantee the diversity of individual members, different single kernel LSSVMs are selected as base predictors, and they also output the primary prediction results independently. Then, all the primary prediction results are integrated to produce the most appropriate prediction results by another particular LSSVM—a multiple kernel LSSVM, which reduces the dependence of modeling accuracy on kernel function and parameters. Phase space reconstruction theory is applied to extract the chaotic characteristic of input data source and reconstruct the data sample, and particle swarm optimization algorithm is used to obtain the best LSSVM individual members. A case study is employed to verify the effectiveness of presented model with real operation data of aero engine. The results show that prediction accuracy of the proposed model improves obviously compared with other three models.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/4615903.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/4615903.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4615903
DOI: 10.1155/2016/4615903
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().