EconPapers    
Economics at your fingertips  
 

Stochastic Stability of Coupled Viscoelastic Systems Excited by Real Noise

Jian Deng

Mathematical Problems in Engineering, 2018, vol. 2018, 1-14

Abstract:

The moment stochastic stability and almost-sure stochastic stability of two-degree-of-freedom coupled viscoelastic systems, under the parametric excitation of a real noise, are investigated through the moment Lyapunov exponents and the largest Lyapunov exponent, respectively. The real noise is also called the Ornstein-Uhlenbeck stochastic process. For small damping and weak random fluctuation, the moment Lyapunov exponents are determined approximately by using the method of stochastic averaging and a formulated eigenvalue problem. The largest Lyapunov exponent is calculated through its relation with moment Lyapunov exponents. The stability index, the stability boundaries, and the critical excitation are obtained analytically. The effects of various parameters on the stochastic stability of the system are then discussed in detail. Monte Carlo simulation is carried out to verify the approximate results of moment Lyapunov exponents. As an application example, the stochastic stability of a flexural-torsional viscoelastic beam is studied.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/4725148.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/4725148.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4725148

DOI: 10.1155/2018/4725148

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:4725148