Power Transformer Partial Discharge Fault Diagnosis Based on Multidimensional Feature Region
Rong Jia,
Yongtao Xie,
Hua Wu,
Jian Dang and
Kaisong Dong
Mathematical Problems in Engineering, 2016, vol. 2016, 1-11
Abstract:
Effectively extracting power transformer partial discharge (PD) signals feature is of great significance for monitoring power transformer insulation condition. However, there has been lack of practical and effective extraction methods. For this reason, this paper suggests a novel method for the PD signal feature extraction based on multidimensional feature region. Firstly, in order to better describe differences in each frequency band of fault signals, empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT) band-pass filter wave for raw signal is carried out. And the component of raw signals on each frequency band can be obtained. Secondly, the sample entropy value and the energy value of each frequency band component are calculated. Using the difference of each frequency band energy and complexity, signals feature region is established by the multidimensional energy parameters and the multidimensional sample entropy parameters to describe PD signals multidimensional feature information. Finally, partial discharge faults are classified by sphere-structured support vector machines algorithm. The result indicates that this method is able to identify and classify different partial discharge faults.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2016/4835694.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2016/4835694.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:4835694
DOI: 10.1155/2016/4835694
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().