Deep Forest-Based Fault Diagnosis Method for Chemical Process
Jiaman Ding,
Qingbo Luo,
Lianyin Jia and
Jinguo You
Mathematical Problems in Engineering, 2020, vol. 2020, 1-15
Abstract:
With the rapid expanding of big data in all domains, data-driven and deep learning-based fault diagnosis methods in chemical industry have become a major research topic in recent years. In addition to a deep neural network, deep forest also provides a new idea for deep representation learning and overcomes the shortcomings of a deep neural network such as strong parameter dependence and large training cost. However, the ability of each base classifier is not taken into account in the standard cascade forest, which may lead to its indistinct discrimination. In this paper, a multigrained scanning-based weighted cascade forest (WCForest) is proposed and has been applied to fault diagnosis in chemical processes. In view of the high-dimensional nonlinear data in the process of chemical industry, WCForest first designs a set of relatively suitable windows for the multigrained scan strategy to learn its data representation. Next, considering the fitting quality of each forest classifier, a weighting strategy is proposed to calculate the weight of each forest in the cascade structure without additional calculation cost, so as to improve the overall performance of the model. In order to prove the effectiveness of WCForest, its application has been carried out in the benchmark Tennessee Eastman (TE) process. Experiments demonstrate that WCForest achieves better results than other related approaches across various evaluation metrics.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/5281512.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/5281512.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5281512
DOI: 10.1155/2020/5281512
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().