OFM-SLAM: A Visual Semantic SLAM for Dynamic Indoor Environments
Xiong Zhao,
Tao Zuo and
Xinyu Hu
Mathematical Problems in Engineering, 2021, vol. 2021, 1-16
Abstract:
Most of the current visual Simultaneous Localization and Mapping (SLAM) algorithms are designed based on the assumption of a static environment, and their robustness and accuracy in the dynamic environment do not behave well. The reason is that moving objects in the scene will cause the mismatch of features in the pose estimation process, which further affects its positioning and mapping accuracy. In the meantime, the three-dimensional semantic map plays a key role in mobile robot navigation, path planning, and other tasks. In this paper, we present OFM-SLAM: Optical Flow combining MASK-RCNN SLAM, a novel visual SLAM for semantic mapping in dynamic indoor environments. Firstly, we use the Mask-RCNN network to detect potential moving objects which can generate masks of dynamic objects. Secondly, an optical flow method is adopted to detect dynamic feature points. Then, we combine the optical flow method and the MASK-RCNN for full dynamic points’ culling, and the SLAM system is able to track without these dynamic points. Finally, the semantic labels obtained from MASK-RCNN are mapped to the point cloud for generating a three-dimensional semantic map that only contains the static parts of the scenes and their semantic information. We evaluate our system in public TUM datasets. The results of our experiments demonstrate that our system is more effective in dynamic scenarios, and the OFM-SLAM can estimate the camera pose more accurately and acquire a more precise localization in the high dynamic environment.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/5538840.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/5538840.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5538840
DOI: 10.1155/2021/5538840
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().