EconPapers    
Economics at your fingertips  
 

Data-Driven Model for Rockburst Prediction

Hongbo Zhao and Bingrui Chen

Mathematical Problems in Engineering, 2020, vol. 2020, 1-14

Abstract:

Rockburst is an extremely complex dynamic instability phenomenon for rock engineering. Due to the complex and unclear mechanism of rockburst, it is difficult to predict precisely and evaluate reasonably the potential of rockburst. With the development of data science and increasing of case history from rock engineering, the data-driven method provides a good way to mine the complex phenomenon of rockburst and then was used to predict the potential of rockburst. In this study, deep learning was adopted to build the data-driven model of rockburst prediction based on the rockburst datasets collected from the literature. The data-driven model was built based on a convolutional neural network (CNN) and compared with the traditional neural network. The results show that the data-driven model can effectively mine the complex phenomenon and mechanism of rockburst. And the proposed method not only can predict the rank of rockburst but also can compute the probability of rockburst for each corresponding rank. It provides a promising and reasonable approach to predict or evaluate the rockburst.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/5735496.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/5735496.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5735496

DOI: 10.1155/2020/5735496

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:5735496