Uncertainty Avoider Interval Type II Defuzzification Method
Sadegh Aminifar
Mathematical Problems in Engineering, 2020, vol. 2020, 1-16
Abstract:
One of the IT2FS (interval type-2 fuzzy system) defuzzification methods uses the iterative KM algorithm. Because of the iterative nature of KM-type reduction, it may be a computational bottleneck for the real-time applications of IT2FSs. There are several other interval type-2 defuzzification methods suffering from lack of meaningful relationship between membership function uncertainties and changing of system output due to lack of clearly defined variables related to uncertainty in their methods. In this paper, a new approach for IT2FS defuzzification is presented by reconfiguring interval type-2 fuzzy sets and how uncertainties are present in them. This closed-formula method provides meaningful relation between the presence of uncertainty and its effect on system output. This study investigates uncertainty avoidance that the output of IT2FS obtained by centroid or bisection methods in comparison with type-1 fuzzy system (T1FLS) moves to points with less uncertainty. Uncertainty can enter into T1FSs and affect system response. Finally, for proving the affectivity of the proposed defuzzification method and uncertainty avoidance, several investigations are done and a prototype two-input one-output IT2FS MATLAB code is enclosed.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/5812163.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/5812163.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5812163
DOI: 10.1155/2020/5812163
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().