Generating Free-Form Grid Truss Structures from 3D Scanned Point Clouds
Hui Ding,
Xian Xu and
Yaozhi Luo
Mathematical Problems in Engineering, 2017, vol. 2017, 1-12
Abstract:
Reconstruction, according to physical shape, is a novel way to generate free-form grid truss structures. 3D scanning is an effective means of acquiring physical form information and it generates dense point clouds on surfaces of objects. However, generating grid truss structures from point clouds is still a challenge. Based on the advancing front technique (AFT) which is widely used in Finite Element Method (FEM), a scheme for generating grid truss structures from 3D scanned point clouds is proposed in this paper. Based on the characteristics of point cloud data, the search box is adopted to reduce the search space in grid generating. A front advancing procedure suit for point clouds is established. Delaunay method and Laplacian method are used to improve the quality of the generated grids, and an adjustment strategy that locates grid nodes at appointed places is proposed. Several examples of generating grid truss structures from 3D scanned point clouds of seashells are carried out to verify the proposed scheme. Physical models of the grid truss structures generated in the examples are manufactured by 3D print, which solidifies the feasibility of the scheme.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/5818627.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/5818627.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5818627
DOI: 10.1155/2017/5818627
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().