Numerical Simulation of an Offset Jet in Bounded Pool with Deflection Wall
Xin Li,
Yurong Wang and
Jianmin Zhang
Mathematical Problems in Engineering, 2017, vol. 2017, 1-11
Abstract:
The turbulent model and VOF methods were used to simulate the three-dimensional turbulence jet. Numerical simulations were carried out for three different kinds of jets in a bounded pool with the deflection wall with angles of 0°, 3°, 6°, and 9°. The numerical simulation agrees well with the experimental data. The studies show that the length of the potential core zone increases with the increase of the deflection angle. The velocity distribution is consistent with the Gaussian distribution and almost not affected by the deflection angle in potential core zone. The decay rates of flow velocity in the transition zone are 1.195, 1.281, 1.439, and 1.532 corresponding to the unilateral deflection angles, 0°, 3°, 6°, and 9°, respectively. The decay rates of velocity in the transition zone are 1.928 and 2.835 corresponding to the bilateral deflection angles 3° and 6°. It is also found that the spread of velocity is stronger in the vertical direction as the deflection angles become smaller. The spread rates of velocity with unilateral deflection wall are higher than those with bilateral deflection walls in the horizontal plane in the pool.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/5943143.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/5943143.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:5943143
DOI: 10.1155/2017/5943143
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().