Multiobjective Order Acceptance and Scheduling on Unrelated Parallel Machines with Machine Eligibility Constraints
Bailin Wang and
Haifeng Wang
Mathematical Problems in Engineering, 2018, vol. 2018, 1-12
Abstract:
This paper studies the order acceptance and scheduling problem on unrelated parallel machines with machine eligibility constraints. Two objectives are considered to maximize total net profit and minimize the makespan, and the mathematical model of this problem is formulated as multiobjective mixed integer linear programming. Some properties with respect to the objectives are analysed, and then a classic list scheduling (LS) rule named the first available machine rule is extended, and three new LS rules are presented, which focus on the maximization of the net profit, the minimization of the makespan, and the trade-off between the two objectives, respectively. Furthermore, a list-scheduling-based multiobjective parthenogenetic algorithm (LS-MPGA) is presented with parthenogenetic operators and Pareto-ranking and selection method. Computational experiments on randomly generated instances are carried out to assess the effectiveness and efficiency of the four LS rules under the framework of LS-MPGA and discuss their application environments. Results demonstrate that the performance of the LS-MPGA developed for trade-off is superior to the other three algorithms.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/6024631.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/6024631.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6024631
DOI: 10.1155/2018/6024631
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().