Forecast and Early Warning of Regional Bus Passenger Flow Based on Machine Learning
Wusheng Liu,
Qian Tan and
Wei Wu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-11
Abstract:
This paper mainly forecasts the short-term passenger flow of regional bus stations based on the integrated circuit (IC) card data of bus stations and puts forward an early warning model for regional bus passenger flow. Firstly, the bus stations were aggregated into virtual regional bus stations. Then, the short-term passenger flow of regional bus stations was predicted by the machine learning (ML) method of support vector machine (SVM). On this basis, the early warning model for regional bus passenger flow was developed through the capacity analysis of regional bus stations. The results show that the prediction accuracy of short-term passenger flow could be improved by replacing actual bus stations with virtual regional bus stations because the passenger flow of regional bus stations is more stable than that of a single bus station. The accurate prediction and early warning of regional bus passenger flow enable urban bus dispatchers to maintain effective control of urban public transport, especially during special and large-scale activities.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6625435.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6625435.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6625435
DOI: 10.1155/2020/6625435
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().