EconPapers    
Economics at your fingertips  
 

A Novel Detection Framework for Detecting Abnormal Human Behavior

Chengfei Wu and Zixuan Cheng

Mathematical Problems in Engineering, 2020, vol. 2020, 1-9

Abstract:

Public safety issues have always been the focus of widespread concern of people from all walks of life. With the development of video detection technology, the detection of abnormal human behavior in videos has become the key to preventing public safety issues. Particularly, in student groups, the detection of abnormal human behavior is very important. Most existing abnormal human behavior detection algorithms are aimed at outdoor activity detection, and the indoor detection effects of these algorithms are not ideal. Students spend most of their time indoors, and modern classrooms are mostly equipped with monitoring equipment. This study focuses on the detection of abnormal behaviors of indoor humans and uses a new abnormal behavior detection framework to realize the detection of abnormal behaviors of indoor personnel. First, a background modeling method based on a Gaussian mixture model is used to segment the background image of each image frame in the video. Second, block processing is performed on the image after segmenting the background to obtain the space-time block of each frame of the image, and this block is used as the basic representation of the detection object. Third, the foreground image features of each space-time block are extracted. Fourth, fuzzy C-means clustering (FCM) is used to detect outliers in the data sample. The contribution of this paper is (1) the use of an abnormal human behavior detection framework that is effective indoors. Compared with the existing abnormal human behavior detection methods, the detection framework in this paper has a little difference in terms of its outdoor detection effects. (2) Compared with other detection methods, the detection framework used in this paper has a better detection effect for abnormal human behavior indoors, and the detection performance is greatly improved. (3) The detection framework used in this paper is easy to implement and has low time complexity. Through the experimental results obtained on public and manually created data sets, it can be demonstrated that the performance of the detection framework used in this paper is similar to those of the compared methods in outdoor detection scenarios. It has a strong advantage in terms of indoor detection. In summary, the proposed detection framework has a good practical application value.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6625695.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6625695.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6625695

DOI: 10.1155/2020/6625695

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6625695