The Extraction Method of Gearbox Compound Fault Features Based on EEMD and Cloud Model
Ling Zhao,
Jiaxing Gong and
Hu Chong
Mathematical Problems in Engineering, 2020, vol. 2020, 1-8
Abstract:
When a compound fault occurs, the randomness and ambiguity of the gearbox will cause uncertainty in the collected signal and reduce the accuracy of signal feature extraction. To improve accuracy, this research proposes a gearbox compound fault feature extraction method, which uses the inverse cloud model to obtain the signal feature value. First, EEMD is used to decompose the collected vibration signals of gearbox faults in normal and fault states. Then, the mutual information method is used to select the sensitive eigenmode function that can reflect the characteristics of the signal. Subsequently, the inverse cloud generator is used to extract cloud digital features and construct sample feature sets. On this basis, the concept of synthetic cloud is introduced, and the cloud-based distance measurement principle is used to synthesize new clouds, reduce the feature dimension, and extract relevant features. Finally, a simulation experiment on a rotating machinery unit with a certain type of equipment verifies that the proposed method can effectively extract the feature of gearbox multiple faults with less feature dimension. And comparing with the feature set extracted by the single cloud model, the results show that the method can better represent the fault characteristic information of the signal.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6661975.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6661975.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6661975
DOI: 10.1155/2020/6661975
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().