EconPapers    
Economics at your fingertips  
 

A Short-Term Traffic Flow Reliability Prediction Method considering Traffic Safety

Shaoqian Li, Zhenyuan Zhang, Yang Liu and Zixia Qin

Mathematical Problems in Engineering, 2020, vol. 2020, 1-9

Abstract:

With the rapid development and application of intelligent traffic systems, traffic flow prediction has attracted an increasing amount of attention. Accurate and timely traffic flow information is of great significance to improve the safety of transportation. To improve the prediction accuracy of the backward-propagation neural network (BPNN) prediction model, which easily falls into local optimal solutions, this paper proposes an adaptive differential evolution (DE) algorithm-optimized BPNN (DE-BPNN) model for a short-term traffic flow prediction. First, by the mutation, crossover, and selection operations of the DE algorithm, the initial weights and biases of the BPNN are optimized. Then, the initial weights and biases obtained by the aforementioned preoptimization are used to train the BPNN, thereby obtaining the optimal weights and biases. Finally, the trained BPNN is utilized to predict the real-time traffic flow. The experimental results show that the accuracy of the DE-BPNN model is improved about 7.36% as compared with that of the BPNN model. The DE-BPNN is superior to the performance of three classical models for short-term traffic flow prediction.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6682216.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6682216.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6682216

DOI: 10.1155/2020/6682216

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6682216