EconPapers    
Economics at your fingertips  
 

Research on the Matching of Fastener Stiffness Based on Wheel-Rail Contact Mechanism for Prevention of Rail Corrugation

Caiyou Zhao, Ping Wang and Mengting Xing

Mathematical Problems in Engineering, 2017, vol. 2017, 1-13

Abstract:

Laying shock absorber fasteners is one of the effective countermeasures used to reduce the ground vibration induced from urban rail transit. However, this kind of fasteners could cause severe rail corrugation. Based on the “wheel-rail dynamic flexibility difference” mechanism, the optimization and further research of fastener stiffness were performed. With the finite element method, the simple beam and board model of the rail system is established to study the vertical and lateral dynamic flexibility characteristics of rails below 1,200 Hz. Within 5–40 kN/mm, a comparison is made between wheel-rail dynamic flexibility differences corresponding to the vertical stiffness and lateral stiffness of different fasteners. The results show that 20 kN/mm and 10 kN/mm are the least and most suitable vertical stiffness values of fasteners, respectively; 40 kN/mm and 5–10 kN/mm are, respectively, the least and most suitable lateral stiffness values of fasteners. The research and analysis results can be adopted as references for deciding the fastener stiffness of urban track.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2017/6748160.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2017/6748160.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6748160

DOI: 10.1155/2017/6748160

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:6748160