Human Action Recognition Algorithm Based on Improved ResNet and Skeletal Keypoints in Single Image
Yixue Lin,
Wanda Chi,
Wenxue Sun,
Shicai Liu and
Di Fan
Mathematical Problems in Engineering, 2020, vol. 2020, 1-12
Abstract:
Human action recognition is an important part for computers to understand the behavior of people in pictures or videos. In a single image, there is no context information for recognition, so its accuracy still needs to be greatly improved. In this paper, a single-image human action recognition method based on improved ResNet and skeletal keypoints is proposed, and the accuracy is improved by several methods. We improved the backbone network ResNet-50 and CPN to a certain extent and constructed a multitask network to suit the human action recognition task, which not only improves the accuracy but also balances the total number of parameters and solves the problem of large network and slow operation. In this paper, the improvement methods of ResNet-50, CPN, and whole network are tested, respectively. The results show that the single-image human action recognition based on improved ResNet and skeletal keypoints can accurately identify human action in the case of different human movements, different background light, and occlusion. Compared with the original network and the main human action recognition algorithms, the accuracy of our method has its certain advantages.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/6954174.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/6954174.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:6954174
DOI: 10.1155/2020/6954174
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().