EconPapers    
Economics at your fingertips  
 

Partial Slip Flow and Heat Transfer over a Stretching Sheet in a Nanofluid

Rajesh Sharma, Anuar Ishak and Ioan Pop

Mathematical Problems in Engineering, 2013, vol. 2013, 1-7

Abstract:

The boundary layer flow and heat transfer of a nanofluid over a stretching sheet are numerically studied. Velocity slip is considered instead of no-slip condition at the boundary as is usually appears in the literature. The governing partial differential equations are transformed into ordinary ones using a similarity transformation, before being solved numerically. Numerical solutions of these equations are obtained using finite element method (FEM). The variations of velocity and temperature inside the boundary layer as well as the skin friction coefficient and the heat transfer rate at the surface for some values of the governing parameters, namely, the nanoparticle volume fraction and the slip parameter are presented graphically and discussed. Comparison with published results for the regular fluid is presented and it is found to be in excellent agreement.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2013/724547.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2013/724547.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:724547

DOI: 10.1155/2013/724547

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:724547