Elimination of End effects in LMD Based on LSTM Network and Applications for Rolling Bearing Fault Feature Extraction
Jianhong Liang,
Liping Wang,
Jun Wu and
Zhigui Liu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-16
Abstract:
Local mean decomposition (LMD) is widely used in the area of multicomponents signal processing and fault diagnosis. One of the major problems is end effects, which distort the decomposed waveform at each end of the analyzed signal and influence feature frequency. In order to solve this problem, this paper proposes a novel self-adaptive waveform point extended method based on long short-term memory (LSTM) network. First, based on existing signal points, the LSTM network parameters of right and left ends are trained; then, these parameters are used to extend the waveform point at each end-side of signal; furthermore, the corresponding parameters are adaptively updated. The proposed method is compared with the characteristic segment extension and the traditional neural network extension methods through a simulated signal to verify the effectiveness. By combing the proposed method with LMD, an improved LMD algorithm is obtained. Finally, application of rolling bearing fault signal is carried out by the improved LMD algorithm, and the results show that the feature frequencies of the rolling bearing’s ball and inner and outer rings are successfully extracted.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/7293454.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/7293454.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7293454
DOI: 10.1155/2020/7293454
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().