Calculation Formula Optimization and Effect of Ring Clearance on Axial Force of Multistage Pump
Chuan Wang,
Weidong Shi and
Li Zhang
Mathematical Problems in Engineering, 2013, vol. 2013, 1-7
Abstract:
Since overlarge axial force can damage the pump, accurate calculation formula of axial force on pump is very significant. The traditional formula is based on the assumption that the leakage amount of the pump is zero and the angular speed of fluid in the pump chamber rotates at half the impeller rotation’s angular speed. In order to propose an accurate calculation formula, the whole flow fields of multistage pumps with three different ring clearances were calculated by using Computational Fluid Dynamics (CFD). The results indicate that the axial force on first-stage impeller is larger than that on the second. Along with the change of ring clearance, the static pressure distribution on the shroud of impeller changes at the same time, which leads to the value change of axial force. Meanwhile, angular speed of the fluid in the pump chamber is changing. Therefore, this research works out the reason why the error of traditional axial force calculation is large when the amount of leakage is relatively high. At last, an accurate calculation formula of axial force on pump is obtained through the verification of numerical simulation and experiment.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2013/749375.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2013/749375.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:749375
DOI: 10.1155/2013/749375
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().