An Improved Teaching-Learning-Based Optimization with Differential Learning and Its Application
Feng Zou,
Lei Wang,
Debao Chen and
Xinhong Hei
Mathematical Problems in Engineering, 2015, vol. 2015, 1-19
Abstract:
The teaching-learning-based optimization (TLBO) algorithm is a population-based optimization algorithm which is based on the effect of the influence of a teacher on the output of learners in a class. A variant of teaching-learning-based optimization (TLBO) algorithm with differential learning (DLTLBO) is proposed in the paper. In this method, DLTLBO utilizes a learning strategy based on neighborhood search of teacher phase in the standard TLBO to generate a new mutation vector, while utilizing a differential learning to generate another new mutation vector. Then DLTLBO employs the crossover operation to generate new solutions so as to increase the diversity of the population. By the integration of the local search and the global search, DLTLBO achieves a tradeoff between exploration and exploitation. To demonstrate the effectiveness of our approaches, 24 benchmark functions are used for simulating and testing. Moreover, DLTLBO is used for parameter estimation of digital IIR filter and experimental results show that DLTLBO is superior or comparable to other given algorithms for the employed examples.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2015/754562.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2015/754562.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:754562
DOI: 10.1155/2015/754562
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().