EconPapers    
Economics at your fingertips  
 

Development of a Novel Soft Sensor with Long Short-Term Memory Network and Normalized Mutual Information Feature Selection

Dongfeng Li, Zhirui Li and Kai Sun

Mathematical Problems in Engineering, 2020, vol. 2020, 1-11

Abstract:

In this paper, a novel soft sensor is developed by combining long short-term memory (LSTM) network with normalized mutual information feature selection (NMIFS). In the proposed algorithm, LSTM is designed to handle time series with high nonlinearity and dynamics of industrial processes. NMIFS is conducted to perform the input variable selection for LSTM to simplify the excessive complexity of the model. The developed soft sensor combines the excellent dynamic modelling of LSTM and precise variable selection of NMIFS. Simulations on two actual production datasets are used to demonstrate the performance of the proposed algorithm. The developed soft sensor could precisely predict the objective variables and has better performance than other methods.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/7617010.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/7617010.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:7617010

DOI: 10.1155/2020/7617010

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:7617010