EconPapers    
Economics at your fingertips  
 

Robust Control Allocation for Spacecraft Attitude Stabilization under Actuator Faults and Uncertainty

Aihua Zhang, Yongchao Wang, Zhiqiang Zhang and Hamid Reza Karimi

Mathematical Problems in Engineering, 2014, vol. 2014, 1-12

Abstract:

A robust control allocation scheme is developed for rigid spacecraft attitude stabilization in the presence of actuator partial loss fault, actuator failure, and actuator misalignment. First, a neural network fault detection scheme is proposed, Second, an adaptive attitude tracking strategy is employed which can realize fault tolerance control under the actuator partial loss and actuator failure within . The attitude tracking and faults detection are always here during the procedure. Once the fault occurred which could not guaranteed the attitude stable for 30 s, the robust control allocation strategy is generated automatically. The robust control allocation compensates the control effectiveness uncertainty which caused the actuator misalignment. The unknown disturbances, uncertain inertia matrix, and even actuator error with limited actuators are all considered in the controller design process. All are achieved with inexpensive online computations. Numerical results are also presented that not only highlight the closed-loop performance benefits of the control law derived here but also illustrate its great robustness.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/789327.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/789327.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:789327

DOI: 10.1155/2014/789327

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:789327