Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine
Jia Uddin,
Myeongsu Kang,
Dinh V. Nguyen and
Jong-Myon Kim
Mathematical Problems in Engineering, 2014, vol. 2014, 1-9
Abstract:
This paper proposes a method for the reliable fault detection and classification of induction motors using two-dimensional (2D) texture features and a multiclass support vector machine (MCSVM). The proposed model first converts time-domain vibration signals to 2D gray images, resulting in texture patterns (or repetitive patterns), and extracts these texture features by generating the dominant neighborhood structure (DNS) map. The principal component analysis (PCA) is then used for the purpose of dimensionality reduction of the high-dimensional feature vector including the extracted texture features due to the fact that the high-dimensional feature vector can degrade classification performance, and this paper configures an effective feature vector including discriminative fault features for diagnosis. Finally, the proposed approach utilizes the one-against-all (OAA) multiclass support vector machines (MCSVMs) to identify induction motor failures. In this study, the Gaussian radial basis function kernel cooperates with OAA MCSVMs to deal with nonlinear fault features. Experimental results demonstrate that the proposed approach outperforms three state-of-the-art fault diagnosis algorithms in terms of fault classification accuracy, yielding an average classification accuracy of 100% even in noisy environments.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2014/814593.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2014/814593.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:814593
DOI: 10.1155/2014/814593
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().