MOOC Dropout Prediction Using a Hybrid Algorithm Based on Decision Tree and Extreme Learning Machine
Jing Chen,
Jun Feng,
Xia Sun,
Nannan Wu,
Zhengzheng Yang and
Sushing Chen
Mathematical Problems in Engineering, 2019, vol. 2019, 1-11
Abstract:
Massive Open Online Courses (MOOCs) have boomed in recent years because learners can arrange learning at their own pace. High dropout rate is a universal but unsolved problem in MOOCs. Dropout prediction has received much attention recently. A previous study reported the problem of learning behavior discrepancy leading to a wide range of fluctuation of prediction results. Besides, previous methods require iterative training which is time intensive. To address these problems, we propose DT-ELM, a novel hybrid algorithm combining decision tree and extreme learning machine (ELM), which requires no iterative training. The decision tree selects features with good classification ability. Further, it determines enhanced weights of the selected features to strengthen their classification ability. To achieve accurate prediction results, we optimize ELM structure by mapping the decision tree to ELM based on the entropy theory. Experimental results on the benchmark KDD 2015 dataset demonstrate the effectiveness of DT-ELM, which is 12.78%, 22.19%, and 6.87% higher than baseline algorithms in terms of accuracy, AUC, and F1-score, respectively.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/8404653.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/8404653.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8404653
DOI: 10.1155/2019/8404653
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().