EconPapers    
Economics at your fingertips  
 

Reliability Modeling of Electromechanical System with Meta-Action Chain Methodology

Genbao Zhang and Yang Wang

Mathematical Problems in Engineering, 2018, vol. 2018, 1-14

Abstract:

To establish a more flexible and accurate reliability model, the reliability modeling and solving algorithm based on the meta-action chain thought are used in this thesis. Instead of estimating the reliability of the whole system only in the standard operating mode, this dissertation adopts the structure chain and the operating action chain for the system reliability modeling. The failure information and structure information for each component are integrated into the model to overcome the given factors applied in the traditional modeling. In the industrial application, there may be different operating modes for a multicomponent system. The meta-action chain methodology can estimate the system reliability under different operating modes by modeling the components with varieties of failure sensitivities. This approach has been identified by computing some electromechanical system cases. The results indicate that the process could improve the system reliability estimation. It is an effective tool to solve the reliability estimation problem in the system under various operating modes.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2018/8547141.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2018/8547141.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8547141

DOI: 10.1155/2018/8547141

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8547141