EconPapers    
Economics at your fingertips  
 

Relationship Matrix Nonnegative Decomposition for Clustering

Ji-Yuan Pan and Jiang-She Zhang

Mathematical Problems in Engineering, 2011, vol. 2011, 1-15

Abstract:

Nonnegative matrix factorization (NMF) is a popular tool for analyzing the latent structure of nonnegative data. For a positive pairwise similarity matrix, symmetric NMF (SNMF) and weighted NMF (WNMF) can be used to cluster the data. However, both of them are not very efficient for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship matrix nonnegative decomposition (RMND), is proposed to discover the latent clustering structure from the pairwise similarity matrix. The RMND model is derived from the nonlinear NMF algorithm. RMND decomposes a pairwise similarity matrix into a product of three low rank nonnegative matrices. The pairwise similarity matrix is represented as a transformation of a positive semidefinite matrix which pops out the latent clustering structure. We develop a learning procedure based on multiplicative update rules and steepest descent method to calculate the nonnegative solution of RMND. Experimental results in four different databases show that the proposed RMND approach achieves higher clustering accuracy.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2011/864540.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2011/864540.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:864540

DOI: 10.1155/2011/864540

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:864540