EconPapers    
Economics at your fingertips  
 

Intelligent Classification Method for Tunnel Lining Cracks Based on PFC-BP Neural Network

Hao Ding, Xinghong Jiang, Ke Li, Hongyan Guo and Wenfeng Li

Mathematical Problems in Engineering, 2020, vol. 2020, 1-12

Abstract:

Tunnel lining crack is the most common disease and also the manifestation of other diseases, which widely exists in plain concrete lining structure. Proper evaluation and classification of engineering conditions directly relate to operation safety. Particle flow code (PFC) calculation software is applied in this study, and the simulation reliability is verified by using the laboratory axial compression test and 1 : 10 model experiment to calibrate the calculation parameters. Parameter analysis is carried out focusing on the load parameters, structural parameters, dimension, and direction which affect the crack diseases. Based on that, an evaluation index system represented by tunnel buried depth ( H ), crack position ( P ), crack length ( L ), crack width ( W ), crack depth ( D ), and crack direction ( A ) is put forward. The training data of the back propagation (BP) neural network which takes load-bearing safety and crack stability as the evaluation criteria are obtained. An expert system is introduced into the BP neural network for correction of prediction results, realizing classified dynamic optimization of complex engineering conditions. The results of this study can be used to judge the safety state of cracked lining structure and provide guidance to the prevention and control of crack diseases, which is significant to ensure the safety of tunnel operation.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/8838216.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/8838216.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8838216

DOI: 10.1155/2020/8838216

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8838216