EconPapers    
Economics at your fingertips  
 

Nonparametric Estimation of Fractional Option Pricing Model

Qing Li, Songlin Liu and Misi Zhou

Mathematical Problems in Engineering, 2020, vol. 2020, 1-8

Abstract:

The establishment of the fractional Black–Scholes option pricing model is under a major condition with the normal distribution for the state price density (SPD) function. However, the fractional Brownian motion is deemed to not be martingale with a long memory effect of the underlying asset, so that the estimation of the state price density (SPD) function is far from simple. This paper proposes a convenient approach to get the fractional option pricing model by changing variables. Further, the option price is transformed as the integral function of the cumulative density function (CDF), so it is not necessary to estimate the distribution function individually by complex approaches. Finally, it encourages to estimate the fractional option pricing model by the way of nonparametric regression and makes empirical analysis with the traded 50 ETF option data in Shanghai Stock Exchange (SSE).

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/8858821.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/8858821.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8858821

DOI: 10.1155/2020/8858821

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:8858821