Short-Term Air Quality Prediction Based on Fractional Grey Linear Regression and Support Vector Machine
Meng Dun,
Zhicun Xu,
Yan Chen and
Lifeng Wu
Mathematical Problems in Engineering, 2020, vol. 2020, 1-13
Abstract:
To predict the daily air pollutants, the fractional multivariable model is established. The hybrid model of the grey multivariable regression model with fractional order accumulation model (FGM(0, m)) and support vector regression model (SVR) is used to predict the air pollutants (PM 10 , PM 2.5 , and NO 2 ) from December 31, 2018, to January 3, 2019, in Shijiazhuang and Chongqing. The absolute percentage errors (APEs) are used to determine the weights of the FGM(0, m) and SVR. Meanwhile, the Holt–Winters model is used to predict the air quality pollutants for the same location and period. When the mean absolute percent error (MAPE) is 0%–20%, it indicates that the model has good accuracy of fitting and prediction. The MAPE of the hybrid model is less than 20%. It is shown that except for the PM 2.5 concentration prediction in Shijiazhuang (13.7%), the MAPE between the forecasting and actual values of the three air pollutants in Shijiazhuang and Chongqing was less than 10%.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/8914501.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/8914501.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:8914501
DOI: 10.1155/2020/8914501
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().