EconPapers    
Economics at your fingertips  
 

Extended Yearly LMDI Approaches: A Case Study of Energy Consumption

Jiandong Chen, Ming Gao, Ding Li, Malin Song, Qianjiao Xie and Jixian Zhou

Mathematical Problems in Engineering, 2020, vol. 2020, 1-13

Abstract:

Although the logarithmic mean Divisia index (LMDI) approach has been widely used in the field of energy and environmental research, it has a shortcoming. Since the LMDI approach only focuses on the base year and reporting year, in situations in which the research period is long, the annual changes during the research period may be difficult to capture. In particular, if there were huge fluctuations in the indicators (such as the energy consumption and carbon emissions) or their drivers during the middle of a research period, a substantial amount of information about the fluctuations will be ignored. Therefore, we propose four extended yearly LMDI approaches, including pure LMDI, weighted LMDI, comprehensive LMDI, and scenario LMDI approaches to better capture fluctuations and compensate for the original LMDI approach’s shortcomings. Additionally, we found that there are mathematical relationships among the four extended LMDI approaches. We further compare these four approaches’ advantages, disadvantages, and applicable situations and analyze a case study on China’s energy consumption based on the four proposed approaches.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/9207896.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/9207896.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9207896

DOI: 10.1155/2020/9207896

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9207896