EconPapers    
Economics at your fingertips  
 

An Improved Recursive Total Least Squares Estimation of Capacity for Electric Vehicle Lithium-Iron Phosphate Batteries

Shaohua Wang, Yue Yang and Konghui Guo

Mathematical Problems in Engineering, 2020, vol. 2020, 1-12

Abstract:

A battery’s capacity is an important indicator of its state of health and determines the maximum cruising range of electric vehicles. It is also a crucial piece of information for helping improve state of charge (SOC) estimation, health prognosis, and other related tasks in the battery management system (BMS). In this paper, we propose an improved recursive total least squares approach to online capacity estimation, which is based on the constrained Rayleigh quotient in terms of battery capacity. This approach accounts for errors in both the SOC and accumulated current measurements not traditionally considered in the battery capacity model to give an unbiased estimation. Moreover, the forgetting factor, updated by minimizing the Rayleigh quotient of the capacity estimation model, is applied to track the changes in the model and get a more precise estimation of the capacity. Finally, the performance of the proposed algorithm is validated via simulation and experimental studies on lithium-iron phosphate batteries. The estimation results show that the proposed algorithm improves capacity estimation accuracy.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2020/9359076.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2020/9359076.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9359076

DOI: 10.1155/2020/9359076

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9359076