A Brush-Type Tire Model with Nonsmooth Representation
Ryo Kikuuwe
Mathematical Problems in Engineering, 2019, vol. 2019, 1-13
Abstract:
This paper proposes a brush-type tire model with a new mathematical representation. The presented model can be seen as a generic model that describes the distributed viscoelastic force and Coulomb-like friction force, which are balancing each other at each point, in the contact patch. The model is described as a partial differential algebraic inclusion (PDAI), which involves the set-valuedness to represent the static friction. A numerical integration algorithm for this PDAI is derived through the implicit Euler discretization along both space and time. Some numerical comparisons with Magic Formula and a LuGre-based tire model are presented. The results show that, with appropriate choice of parameters, the proposed model is capable of producing steady-state characteristics similar to those of Magic Formula. It is also shown that the proposed model realizes a proper static friction state, which is not realized with a LuGre-based tire model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2019/9747605.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2019/9747605.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9747605
DOI: 10.1155/2019/9747605
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().