Improved Lower Bound of LFMD with Applications of Prism-Related Networks
Muhammad Javaid,
Hassan Zafar,
Q. Zhu and
Abdulaziz Mohammed Alanazi
Mathematical Problems in Engineering, 2021, vol. 2021, 1-9
Abstract:
The different distance-based parameters are used to study the problems in various fields of computer science and chemistry such as pattern recognition, image processing, integer programming, navigation, drug discovery, and formation of different chemical compounds. In particular, distance among the nodes (vertices) of the networks plays a supreme role to study structural properties of networks such as connectivity, robustness, completeness, complexity, and clustering. Metric dimension is used to find the locations of machines with respect to minimum utilization of time, lesser number of the utilized nodes as places of the objects, and shortest distance among destinations. In this paper, lower bound of local fractional metric dimension for the connected networks is improved from unity and expressed in terms of ratio obtained by the cardinalities of the under-study network and the local resolving neighbourhood with maximum order for some edges of network. In the same context, the LFMDs of prism-related networks such as circular diagonal ladder, antiprism, triangular winged prism, and sun flower networks are computed with the help of obtained criteria. At the end, the bounded- and unboundedness of the obtained results is also shown numerically.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/9950310.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/9950310.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9950310
DOI: 10.1155/2021/9950310
Access Statistics for this article
More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().