EconPapers    
Economics at your fingertips  
 

Computer Vision-Based Wildfire Smoke Detection Using UAVs

Ehab Ur Rahman, Muhammad Asghar Khan, Fahad Algarni, Yihong Zhang, M. Irfan Uddin, Insaf Ullah and Hafiz Ishfaq Ahmad

Mathematical Problems in Engineering, 2021, vol. 2021, 1-9

Abstract:

This paper presents a new methodology based on texture and color for the detection and monitoring of different sources of forest fire smoke using unmanned aerial vehicles (UAVs). A novel dataset has been gathered comprised of thin smoke and dense smoke generated from the dry leaves on the floor of the forest, which is a source of igniting forest fires. A classification task has been done by training a feature extractor to check the feasibility of the proposed dataset. A meta-architecture is trained above the feature extractor to check the dataset viability for smoke detection and tracking. Results have been obtained by implementing the proposed methodology on forest fire smoke images, smoke videos taken on a stand by the camera, and real-time UAV footages. A microaverage F1-score of 0.865 has been achieved with different test videos. An F1-score of 0.870 has been achieved on real UAV footage of wildfire smoke. The structural similarity index has been used to show some of the difficulties encountered in smoke detection, along with examples.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/MPE/2021/9977939.pdf (application/pdf)
http://downloads.hindawi.com/journals/MPE/2021/9977939.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlmpe:9977939

DOI: 10.1155/2021/9977939

Access Statistics for this article

More articles in Mathematical Problems in Engineering from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlmpe:9977939