Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus niger) and Their Characterization
Aisha Shamim,
Monis Bin Abid and
Tariq Mahmood
International Journal of Chemistry, 2019, vol. 11, issue 2, 119-126
Abstract:
Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.
Keywords: antibacterial; biogenic synthesis; chemical method; fungi; microorganisms; nanoparticles; zinc oxide (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.ccsenet.org/journal/index.php/ijc/article/download/0/0/40467/41675 (application/pdf)
http://www.ccsenet.org/journal/index.php/ijc/article/view/0/40467 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:ijcjnl:v:11:y:2019:i:2:p:119-126
Access Statistics for this article
More articles in International Journal of Chemistry from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().