A Multi-sensor Analysis of Selected Reflectance-Based Crop Coefficient Models for Daily Maize Evapotranspiration Estimation
Edson Costa-Filho,
José L. Chávez and
Huihui Zhang
Journal of Agricultural Science, 2024, vol. 15, issue 12, 1
Abstract:
This study evaluated three reflectance-based crop coefficient models (RBCC) for daily maize actual evapotranspiration (ETa) estimates, using multispectral data from spaceborne, airborne, and proximal platforms. The goal was to identify the optimal multispectral sensor that gives more accurate daily ETa estimates. The remote sensing (RS) multispectral platforms included Landsat-8, Sentinel-2, Planet CubeSat, handheld multispectral radiometer (MSR), and unmanned aerial system or UAS, spatial resolution from 30 m to 0.03 m. Three RBCC models that use different vegetation indices as input variables were evaluated in the study. One RBCC uses the normalized difference vegetation index (NDVI). The second model uses the soil-adjusted vegetation index (SAVI), and the third model uses canopy cover (fc). The data for this study were from two maize research sites in Greeley and Fort Collins, Colorado, USA, collected in 2020 and 2021. The Greeley site had a subsurface drip system, while the Fort Collins site had surface irrigation (furrow). Daily maize ETa predictions were compared with observed daily maize ETa data from an Eddy Covariance system installed at each research site. Results indicated that, depending on the RS of ETa algorithm and platform, the optimal input RS data was different. The MSR sensor (1 m) provided the best remote sensing data (input) for the SAVI-based RBCC ETa model, with a maize ETa error (MBE±RMSE) of -0.13 (-3%)±0.67 (16%) mm/d. Sentinel-2 was the best sensor for the remaining two RBCC daily maize ETa algorithms, since the errors for the NDVI-based and fc-based RBCC models for maize ETa were 0.21 (5%)±0.78 (18%) mm/d and 0.59 (14%)±1.07 (25%) mm/d, respectively. These results indicate the need for methods to improve the spectral quality of the remote sensing data to improve spatial ETa estimates and advance sustainable irrigation water management.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ccsenet.org/journal/index.php/jas/article/download/0/0/49466/53417 (application/pdf)
https://ccsenet.org/journal/index.php/jas/article/view/0/49466 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:jasjnl:v:15:y:2024:i:12:p:1
Access Statistics for this article
More articles in Journal of Agricultural Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().