Short-Term Soil Nitrous Oxide Emissions as Affected by Enhanced Efficiency Nitrogen Fertilizers and Temporarily Waterlogged Conditions
Brendan Zurweller,
Peter Motavalli,
Kelly Nelson and
Christopher Dudenhoeffer
Journal of Agricultural Science, 2015, vol. 7, issue 12, 1
Abstract:
 Poorly-drained claypan soils in the Midwestern United States experience periods of short-term soil saturation shortly after pre-plant N fertilization, which may result in relatively large amounts of soil surface N2O emissions. Slowing the release or conversion of N fertilizer to soil NO3 early in the growing seasonthrough the use of enhanced efficiency fertilizers (EEF) could be an effective strategy for reducing soil N2O emissions and gaseous N loss during a period of relatively low plant N demand. The objective of this study was to determine the effects of short-term soil waterlogging and pre-plant applications of conventional and EEF on soil inorganic N and N2O emissions during and up to four days following a waterlogging event during the dry down period. A two-year field study planted to corn (Zea mays L.) was initiated in 2012 on a poorly-drained claypan soil in Northeast Missouri. Waterlogging treatments were initiated at the V6 corn stage of phenological development. Main plots consisted of no waterlogging or water ponded 7 to 13 cm above the soil surface for three days, and sub-plot N fertilizer treatments [non-treated control (CO), or preplant broadcast applications of 168 kg N ha-1 of urea (NCU), urea plus nitrapyrin nitrification inhibitor (NCU+NI), and polymer coated urea (PCU)]. In 2012, greater cumulative soil N2O-N emissions of 2.8 kg N2O-N ha-1 were observed with PCU in comparison to NCU over the entire seven day sampling period. A significant portion of cumulative soil N2O emissions were associated with the four day soil drying phase in 2012, where PCU and NCU+NI had greater emissions (1.9 and 1.2 kg N2O-N ha-1) compared to NCU. The proportion of N fertilizer lost as N2O-N averaged over all pre-plant N treatments during the 2012 and 2013 sampling periods in the non-waterlogged soils were 0.04% and 0.03%, and 1.1% and 2.6% in the waterlogged soils, respectively. These results suggest that a large proportion of the cumulative soil surface N2O emissions typically observed in these poorly-drained soils over a growing season may occur during and shortly after soil waterlogging events.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ccsenet.org/journal/index.php/jas/article/download/52474/29190 (application/pdf)
https://ccsenet.org/journal/index.php/jas/article/view/52474 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:jasjnl:v:7:y:2015:i:12:p:1
Access Statistics for this article
More articles in Journal of Agricultural Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().