An Algebraic Pedotransfer Function to Calculate Standardized in situ Determined Field Capacity
Theophilo Ottoni Filho,
Isaias Leal,
José de Macedo and
Bruno Reis
Journal of Agricultural Science, 2016, vol. 8, issue 8, 158
Abstract:
Despite the large applicability of the field capacity (FC) concept in hydrology and engineering, it presents various ambiguities and inconsistencies due to a lack of methodological procedure standardization. Experimental field and laboratory protocols taken from the literature were used in this study to determine the value of FC for different depths in 29 soil profiles, totaling 209 soil samples. The volumetric water content (theta) values were also determined at three suction values (6 kPa, 10 kPa, 33 kPa), along with bulk density (BD), texture (T) and organic matter content (OM). The protocols were devised based on the water processes involved in the FC concept aiming at minimizing hydraulic inconsistencies and procedural difficulty while maintaining the practical meaning of the concept. A high correlation between FC and theta(6 kPa) allowed the development of a pedotransfer function (Equation 3) quadratic for theta(6 kPa), resulting in an accurate and nearly bias-free calculation of FC for the four database geographic areas, with a global root mean squared residue (RMSR) of 0.026 m3·m-3. At the individual soil profile scale, the maximum RMSR was only 0.040 m3·m-3. The BD, T and OM data were generally of a low predicting quality regarding FC when not accompanied by the moisture variables. As all the FC values were obtained by the same experimental protocol and as the predicting quality of Equation 3 was clearly better than that of the classical method, which considers FC equal to theta(6), theta(10) or theta(33), we recommend using Equation 3 rather than the classical method, as well as the protocol presented here, to determine in-situ FC.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ccsenet.org/journal/index.php/jas/article/download/60339/32954 (application/pdf)
https://ccsenet.org/journal/index.php/jas/article/view/60339 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:jasjnl:v:8:y:2016:i:8:p:158
Access Statistics for this article
More articles in Journal of Agricultural Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().