EconPapers    
Economics at your fingertips  
 

Modeling the Bi-directional DC-DC Converter for HEV's

Chongwu Wang, Xiangzhong Meng and Xiaowei Guo

Modern Applied Science, 2007, vol. 1, issue 4, 87

Abstract: Hybrid Electrical Vehicles-HEV!?s are the importnt ways to improve vehicle performance. The transformer isolated bi-directional DC-DC converters are the key components of the traction system in HEV!?s. This paper presents adetail mathematic model of isolated bi-directional DC-DC converter for HEV!?s. Approximate models are important mathematic methods especially for analysis and closed-loop control design converter circuits. These differential equations, which govern the converter operation, change periodically among a set of linear differential equations because of the switch effect. Basing on the time-scale the state variables was separate as fast-scale and slow-scale variables. The fast changing variable of the leakage inductor was eliminated by substitute the fast-scale variable into slow-scale variable equations, resulting in reduced order differential equations. From this set of reduced orderdifferential equations the completely averaged model of the isolated DC/DC converter was derived. The simulated results reveal that the circuit and mathematical model are consistent very well. The averaged state variables can be treated as a small component plus a DC component, so the averaged model can be separated a dynamic small signal part and a DC part. This linearized small signal model is suit for control design and analysis at a steady point that is decided by the DC component. As an example a PI controller was design basing on the linear model.

Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://ccsenet.org/journal/index.php/mas/article/download/2775/2565 (application/pdf)
https://ccsenet.org/journal/index.php/mas/article/view/2775 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ibn:masjnl:v:1:y:2007:i:4:p:87

Access Statistics for this article

More articles in Modern Applied Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().

 
Page updated 2025-03-19
Handle: RePEc:ibn:masjnl:v:1:y:2007:i:4:p:87