Seemingly Unrelated Regression Equations for Developing a Pavement Performance Model
Ciro Caliendo,
Maurizio Guida and
Emiliana Pepe
Modern Applied Science, 2015, vol. 9, issue 13, 199
Abstract:
The paper presents a joint analysis of some pavement performance indicators based on a system of seemingly unrelated regression equations (SURE) which allows to handle correlated error terms. In particular, three major indicators such as the side friction coefficient (SFC20°C), mean-profile depth (MPD), and international roughness index (IRI), were measured in a case study and subsequently used in analysis. Regression parameters were estimated by the Maximum Likelihood Method and the t-statistic was considered to show the statistical significance of regression coefficients. The results show that estimation points have the signs expected- the SFC20°C decreases as the number of accumulated trucks (Nt) increases; whereas the MPD and IRI increase as the number of trucks increases. A likelihood ratio test was also carried out to determine whether the system model, which assumes correlation among error terms, was more appropriate than separate models. In this particular case, with three degrees of freedom, was found that the result corresponds to a p-value 0.150 and the null hypothesis cannot be rejected at any significance level less than this value.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://ccsenet.org/journal/index.php/mas/article/download/53146/29713 (application/pdf)
https://ccsenet.org/journal/index.php/mas/article/view/53146 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ibn:masjnl:v:9:y:2015:i:13:p:199
Access Statistics for this article
More articles in Modern Applied Science from Canadian Center of Science and Education Contact information at EDIRC.
Bibliographic data for series maintained by Canadian Center of Science and Education ().