Risk-averse joint facility location-inventory optimisation for green closed-loop supply chain network design under demand uncertainty
Ying Xu,
Xiao Zhao,
Pengcheng Dong and
Guodong Yu
European Journal of Industrial Engineering, 2023, vol. 17, issue 2, 192-219
Abstract:
This paper considers a joint facility location-inventory optimisation for green closed-loop supply chain network design under demand uncertainty. Under the uncoordinated inventory policy, we propose a chance-constrained risk-averse bi-objective 0-1 mixed-integer nonlinear stochastic programming to minimise the total expected cost and CO2 emissions. To solve the model, we first present an equivalent reformulation with a single objective based on distributionally robust optimisation. Then, we provide a linear reformulation with some valid inequalities. We also provide a greedy heuristic decomposition searching rule to solve the large-scale problem. We finally present a numerical analysis to show the performance of our methods. Results illustrate that the risk-averse joint model can effectively improve service capability and reliability than independent and risk-neutral location and inventory problems. We also recommend that the incompletely uncoordinated strategy for the joint optimisation can be more cost-effective and generate fewer workloads. Besides, the proposed algorithm achieves a more desirable performance than CPLEX for large-scale problems. [Submitted: 10 December 2020; Accepted: 15 January 2022]
Keywords: green closed-loop supply chain; facility location; inventory; risk-averse; chance constraint; distributionally robust optimisation. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=129444 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:eujine:v:17:y:2023:i:2:p:192-219
Access Statistics for this article
More articles in European Journal of Industrial Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().